Copied to
clipboard

G = C42:4F5order 320 = 26·5

1st semidirect product of C42 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:4F5, C20.28C42, Dic5.8C42, (C4xF5):6C4, (C4xC20):11C4, C5:(C42:4C4), C4.21(C4xF5), (C4xDic5):19C4, C10.5(C2xC42), (D5xC42).32C2, D10.21(C4oD4), D10.27(C22xC4), D10.3Q8.9C2, C10.5(C42:C2), C22.31(C22xF5), D5.1(C42:C2), (C22xF5).12C22, (C22xD5).263C23, C2.3(D10.C23), C2.7(C2xC4xF5), (C2xC4xF5).8C2, (C2xF5).5(C2xC4), (C4xD5).72(C2xC4), (C2xC4).161(C2xF5), (C2xC20).170(C2xC4), (C2xC4xD5).360C22, (C2xC10).24(C22xC4), (C2xDic5).172(C2xC4), SmallGroup(320,1024)

Series: Derived Chief Lower central Upper central

C1C10 — C42:4F5
C1C5D5D10C22xD5C22xF5C2xC4xF5 — C42:4F5
C5C10 — C42:4F5
C1C2xC4C42

Generators and relations for C42:4F5
 G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=a2b, dcd-1=c3 >

Subgroups: 618 in 178 conjugacy classes, 76 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C2xC4, C23, D5, C10, C10, C42, C42, C22xC4, Dic5, Dic5, C20, C20, F5, D10, C2xC10, C2.C42, C2xC42, C4xD5, C4xD5, C2xDic5, C2xDic5, C2xC20, C2xC20, C2xF5, C2xF5, C22xD5, C42:4C4, C4xDic5, C4xDic5, C4xC20, C4xF5, C2xC4xD5, C2xC4xD5, C22xF5, D10.3Q8, D5xC42, C2xC4xF5, C42:4F5
Quotients: C1, C2, C4, C22, C2xC4, C23, C42, C22xC4, C4oD4, F5, C2xC42, C42:C2, C2xF5, C42:4C4, C4xF5, C22xF5, C2xC4xF5, D10.C23, C42:4F5

Smallest permutation representation of C42:4F5
On 80 points
Generators in S80
(1 46 6 41)(2 47 7 42)(3 48 8 43)(4 49 9 44)(5 50 10 45)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(21 26)(22 28 25 29)(23 30 24 27)(31 36)(32 38 35 39)(33 40 34 37)(42 43 45 44)(47 48 50 49)(52 53 55 54)(57 58 60 59)(61 66)(62 68 65 69)(63 70 64 67)(71 76)(72 78 75 79)(73 80 74 77)

G:=sub<Sym(80)| (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(21,26)(22,28,25,29)(23,30,24,27)(31,36)(32,38,35,39)(33,40,34,37)(42,43,45,44)(47,48,50,49)(52,53,55,54)(57,58,60,59)(61,66)(62,68,65,69)(63,70,64,67)(71,76)(72,78,75,79)(73,80,74,77)>;

G:=Group( (1,46,6,41)(2,47,7,42)(3,48,8,43)(4,49,9,44)(5,50,10,45)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(21,26)(22,28,25,29)(23,30,24,27)(31,36)(32,38,35,39)(33,40,34,37)(42,43,45,44)(47,48,50,49)(52,53,55,54)(57,58,60,59)(61,66)(62,68,65,69)(63,70,64,67)(71,76)(72,78,75,79)(73,80,74,77) );

G=PermutationGroup([[(1,46,6,41),(2,47,7,42),(3,48,8,43),(4,49,9,44),(5,50,10,45),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(21,26),(22,28,25,29),(23,30,24,27),(31,36),(32,38,35,39),(33,40,34,37),(42,43,45,44),(47,48,50,49),(52,53,55,54),(57,58,60,59),(61,66),(62,68,65,69),(63,70,64,67),(71,76),(72,78,75,79),(73,80,74,77)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M···4AF 5 10A10B10C20A···20L
order122222224444444444444···4510101020···20
size1111555511112222555510···1044444···4

56 irreducible representations

dim111111124444
type++++++
imageC1C2C2C2C4C4C4C4oD4F5C2xF5C4xF5D10.C23
kernelC42:4F5D10.3Q8D5xC42C2xC4xF5C4xDic5C4xC20C4xF5D10C42C2xC4C4C2
# reps1412621681348

Matrix representation of C42:4F5 in GL6(F41)

900000
090000
009000
000900
000090
000009
,
100000
2400000
003402727
00147140
00014714
002727034
,
100000
010000
0040404040
001000
000100
000010
,
9320000
0320000
001000
000001
000100
0040404040

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,2,0,0,0,0,0,40,0,0,0,0,0,0,34,14,0,27,0,0,0,7,14,27,0,0,27,14,7,0,0,0,27,0,14,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[9,0,0,0,0,0,32,32,0,0,0,0,0,0,1,0,0,40,0,0,0,0,1,40,0,0,0,0,0,40,0,0,0,1,0,40] >;

C42:4F5 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4F_5
% in TeX

G:=Group("C4^2:4F5");
// GroupNames label

G:=SmallGroup(320,1024);
// by ID

G=gap.SmallGroup(320,1024);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,100,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<